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L. INTRODUCTION

The problem of scattering by wedges has been treated extensively
by many authors [1,2]. Usually the analysis involves asymptotic methods
to evaluate far-fields, with little emphasis on near-field calculations.
It is the near-field aspect with which the present paper is concerned. ]

An interest in the near zone fields of a source near an edge arises
when formulating a moment method solution to the problem of a wire antenna
mounted near the edge of a plate or wedge. In a previous paper [3], the
authors presented a moment method technique whereby problems with wires
mounted .1X or greater from an edge may be treated. Desiring to extend
this technique by synthesizing an expansion mode to treat the case of
the wire near an edge, the analysis presented here forms a first step.

S e

In the present analysis an electric line source parallel to an
edge, with arbitrary current flow, is considered. Simple expressions for
the near zone fields are derived which exhibit not only the correct edge
behavior, but the source singularity as well.

II. THEORY FOR PERFECTLY CONDUCTING VIEDGE
A. Introduction

The geometry of the problem is shown in Figure 1. The field point
is (p,¢) while the electric line source is at (p',9'). The line source
is parallel to the edge of the wedge and has components I, Iy, and I,
of current in the p, ¢, and Z directions, respectively. %he current is
assumed to be constant with respect to z. Thus the source current density
may be written as

T(o20) = (1,541, 341,2) 1 6(o-p")8(4-0") A, ()

The method of solution is to use the two-dimensional dyadic Green's
function for the wedge to find the magnetic field due to the vector
current J. Then, since the field and source points are close to the edge,
small argument approximations are used for the Bessel functions which
occur in the resulting infinite series. The series is then summed in
closed form, preserving the source singularity. Maxwell's equations are
used to find the E fields. Of course, with the fields of an electric
source known, the fields of a magnetic source may be found from duality.

B. Two-Dimensional Dyadic Green's Function

The two-dimensional dyadic Green's function is a solution of the
vector wave equation

(7x7x-k2)E , (RIR )=ox[T6 (R-R")] @)




CROSS—SECTION R — Y 3
WEDGE SURFACE S
Figure 1. Geometry of the line source near an edge.
where k = %1 , 1 is the unit dyad, R=pp+¢¢, R'=p'p+¢'3, and §m2 satisfies
0

the boundary condition ﬁxVx§m2=0 on s. The fields are then found from

AR = [ 8, (IR - TR as, (3)
and, assuming et time dependence,
]
E(R) = I‘E; [VXH.(R-) “ JERYL . (4)

The integration in Equation (3) is over the source region. Using
Equation (1) in Equation (3) gives

AR = 1) 8 ,(RIR) -6 + 18 ,(RIR)4+1,8 ,(RIR") -2 . (5)

The Green's function sz is given by Tai [4,5]*:

*Note that, from Equation (1), V-§m2=0 so that only the M and_N vector
wave functions are needed in the eigenfunction expansion of Gpp.
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2 - L N + N M
& (RIR) = S‘“ ood Noar * Near Mear

wave functions arex*

T sin & e cos 2
Héak 59, (%) Coga @0 9.0 )g5pe ¢ 9
T gas> o=
A (2) 3
e\ Jg(Re)gina ¢ 2
0

refer to M and N with primed spatial (source) coordinates, whereas
elsewhere the prime refers to differentiation with respect to the
argument.

i - ¢ = HP = ¢= = HZ =
Equation (5-7), Y AT SOl H% HZ = 0, and

. .f e Ui O
Ps9) = A cosa¢sina¢’
: En=ggle™ ) ™ nso (145, ) (0Z3)

223 (0)35 (%)
0 (1+e°)(x7-k7)

e~ 8

=21 ¢
H¢(p,¢) = (}rit-—y j dx cosa¢cosa¢’
» s n

o]

found from the 3-D form given in Reference [4] by letting h=0.
3
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Consistent with Tai's notation [4], M and N' in Equation (6)

In defining field components, superscripts refer to the source
polarization and subscripts refer to the field component. Then, from

(6)

_J1 n=0 FEA m i = AT
where 60 = <§ n#0 * a=nv=n (2;:337 s n=0,1,2 and the vector

(7)

(8)

(9)

*The 2-D form of the vector wave functions given above is most easily
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H: (0 5 9) :;5—-_7 : § dA 3 o, 0eld, (30') i (10)
: 0,9) = - ! cosa¢sinag’
: . X=gle 2. =0 (1+5o)(A2-k2)
g 2 o 220! (2)d (o)
Ho(050) = 7y S d - S sinagsinag' . (11)
gt 2 . pe0 - (I8 J(ATKT)

The integrations in Equations (8-10) can be evaluated [4] to give

3B (") pse!

| Jrl 2 : '
i 0 = o aCOSa%SmaQ

E fevesh o =4y o nZO a (2)

Hy '(ke)d (ko') o0

2"
; ; % J (kp)H( (ko') p<p’
2‘ : Jnkl T CoSa¢cosad’ < s

$ 2 9
Hz(ps¢) (2"-¢0) néO (1+60)

1) (k)2 (k') %0

(13)
p e 2,k M2 (ko) o
z S v aCoSasdsinae’ i >
Hp (p,¢) = ,",_¢ o L +8
Ll A H 2 (k0)d (ko') o>
E o o
: (14)
| jmkI i VR U CHENES
| o) = Syl | Hmstepnes’ |
; ! LA ? Héz) (ke)d (ko') o>p'

E | (15)

Up to this point the field expressions are completely rigorous.




€. Near Field Calculation

. E. o ;hehsourge and f'i(e]c]l po:"nt'é:lar]'e ncl)jw restri;:ted to be close to the !
: ge of the wedge, so ko<1 an <l. Using small argument approximations ‘
' e for the Bessel functions in Equations (12-15) and trigonometric identities b
{ yields i
L : 2 L () Isinalore’)-sina(e-9')] o'
- n= :
o B e
¢ 3 p4 m ¢0 (6] - g
g & 1
’ %‘ Z] (F-)"Tsina(e+e')-sina(4-0")] o>
: o> n=
1 I %— ZO (%r)a[COSa(¢+¢')+cosa(¢-¢')] p<p"
n=
- ¢ 15 $
;, Hz(99¢) .n,_¢o o = ;
& > Zo (5=)*[cosa(¢+4' ) +cosal(6-4')141 oo
L 24 n=
(17)
: v} Z] (5r)°Csina(¢+e')-sina(e-6')]  o<o'
4 n=
in Holos9) = TH-%TQ_ L
t . v 21 (5=)°Csina(e+¢')-sina(e-¢')] o>
5 ig
- (18)
E ! ¥ ] T p a 1 ) < 1
;L | 5 nZ (‘;-r) [cosa(é+e')-cosa(d-4')]  p<p
) z “ pa i =
r H¢(o s9) m % !
~ :]g 2] (g—)a[cosa(ﬂb’ﬂb')-c05a(¢-¢')] p>p
n=

—
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Using the
simplification,

summation formulas A3 and A4 of the Appendix gives, after
the desired closed form results:

-1 ¥ '\’-] ) : ]
H(os0) = -2-(7—-;—"0,,‘:% E—&’J-l’"“ i sneeed " )] (20)

-1
Io'V v Vv v v
¢ e p'V-p cosv(¢+e') . o' -p cosv(s-¢")
Hy(ps¢) = stomy o R, + R (21)
e l inv(4+e') (-0')
z T2 sinv : sinv(¢-¢'
Hp(p '¢) o 2(2'""4’0) R+ - R_ (22)

2 Iz"\)-1 o"Veosv(¢+6' )" o' Vcosv(4-¢')-p
H¢(Ds¢) 2279 ) R = R (23)
o

+ -

where v = xTo— ; Ry = 02V4p12Y_25V% Veosv(9t9')
0

The F fields could be found either by using (4) on (12-15) and
applying the procedure of small argument approximations and summation
s of the series, or using (4) on (20-23) directly. Identical results
are obtained with either method for all E components except for E§,
which would reduce to zero if the curl of (22,23) were taken. Thus,
Ei is found from (4) and (14-15), while the other E components are
found using (4) and (20,21). After simplification, E$ = EZ = E = E5 = 0
and

I v(pp')v']

E (0,) = 2% "= (6249 2¥) cos v (9"
gt ZSweOIZw-¢of RZ

+

R2 0

2v 2v -
- ngp'v-(p +p' )COSV(¢'¢') - b -p' -¢'
3 5 s(p P )5(¢ ¢ )

(24)
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=

23ue g (Zn-5,) R2 R

ryv-1
E%(0,9) = Lube l [E%'Zv-pzv)sinv(¢+¢') £ ip'zv-pzv)sinv(¢-¢'{J
. iidhe >

e

(25)

il
E?(0,9) = e '2")s1n (¢#0') , (62%-p'%)sinv(6-0")
p R Zjue (2n-9) R2 o

* -

]

=

(26)

=

e 0 (0]

] V-]
r (0. 9) I%"(pp ) 20% V- (0" 2V % )cosy (4+9")
| ¢ we m-¢ R2

oy
. ;- VoV 12v, 2v -¢' I
a5 R;p )cosv( ¢-¢ E] = jze = §(p=p")s(¢=-0")
- ; 0
e
r From Equations (4,14,15),
i (
] 3, (ko )H'?) (o) a
L -k Iz X i ; L I
£2 2(0,4) = e nZ1 sina¢sinad ﬁ 3 jZE——ﬁ(o-o )6(¢-4")
Hy ' (ko)d (ko) p>p!
\ (28)

Using small argument approximations in the Bessel functions in
Equation (28) gives

(N
Z] [cosal¢+¢')-cosa(s-¢')] ;],- (Ee)™ L p<p!
E (ps¢) = ;"1'< J(L)C (O-O )6(¢ ¢ )
nzl [cosa(¢+¢')-cosa(¢-¢")] ',]; (g—l-) p>p'
S (29)
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Using the summation formula (A7) of the Appendix gives %

2 .
-jk-1 R I %
Ex(p,0) = r—"—"< *) foep e loled) (30) |

Equations (20-23), (24-27), and (30) are the complete field expressions
for an arbitrary vector electric line source, and are rigorous in the

near field limit, including the proper source singularity. Note the
proper edge behavior in the fields as p>0. Also note that the expressions
for H in Equations (20-23) are independent of frequency, indicating a
quasi-static result. Hence (20-23) could have been obtained from a
conformal mapping approach.

Figure 2 shows the magnitude of E® vs. distance along the surface
of the wedge for various wedge angles axd A=Tm, p'=.1m, ¢'=0, and I¢=1.

Although the transverse field components are singular at the edge
of the ideal wedge, no such singularity exists on any physically
realizable electromagnetic scatterer. The reason for this difference is
that the ideal wedge has a perfectly sharp edge with a truly discontinuous
normal vector, while in physical reality any real "edge" will have a
; small radius of curvature so that the normal vector at the "edge" will
3 change continuously as it moves around the "edge". This fact was
‘ recently used by Rhoads [6] in connection with phys1ca11y realizable
antenna aperture distributions.

Another interesting observation is that some field components
become singular when the 1ine source approaches the edge (p'»0). This is
in agreement with reciprocity. Of course, this situation could never
happen in practice because the perfectly sharp wedge does not exist.

In order to get a feeling for the field behavior at a physical
"edge" the mathematically ideal edge of the wedge of this section is
removed by adding a circular cylinder tip. Although this geometry is
not an exact model of a physical edge, it should allow a qualitative
| view of the field behavior, with the advantage that it is mathematically
; tractable.

III. THE CYLINDER TIPPED HALF-PLANE

In this section, using the same method as outlined in Section II,
the closed-form field equations for a cylinder tipped wedge are treated.
Only the expression for E§ for the special case of a half-plane (¢ =0)
with a I, Tine source (1 —Ip—O) on the surface of the half-plane (¢ =0)
is presented here, but the general case, for all field components and
arbitrary wedge angle, could be deve]oped in the same manner.

8
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The geometry for the cylinder tipped half-plane is shown in
Figure 3. The two-dimensional dyadic Green's function may be obtained

#Y
(p.¢)
g
LINE
é ‘(/SOURCE
. 4 P
a p' X

Figure 3. Geometry of an electric line source on the surface and
close to the edge of a cylinder_ tipped half-plane.
Current polarization is in the ¢ (or y) direction.

from the 3-D result given by Tai [4] as described in Section II. The
Green's function is seen to consist of a sum of the half-plane Green's
function and terms which account for scattering from the cylindrical
tip. Thus,

TH(R) = pPlvedoe) (m) 4 poleyl) (),

where E¢(wedge)(u) is given by Equations (26,27). Omitting the detailed
derivation,

1/2 3/2
LY ) e )
o AL T vy 2 \1F2 > ) 2
[E:Z(%&;r) cos-% + (25115}

The total E® field for =0, ¢'=0, ¢,=0, p'=.1m, A=1m is plotted vs.
p=x for various vflues of a for the cylinder-tipped half-plane in Figure

4. Also shown in this figure is the E? field for a perfectly sharp half-
plane, which would correspond to a=0 (20 cylinder tip). Figure 5 shows the
same curves for p'=.,01 (A=Im). The p=x axis is logarithmic to give an

10
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Figure 4. Magnitude of Eg (phase = -90°) versus position (p=x) along
the surface of a cylinder tipped half-plane for various

values of cylinder tip radius, a.

I¢=] ’ ¢0=0 (M]f"p]ane) .

p'=.1m, A=Im, ¢'=0, ¢=0,
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Figure 5. Magnitude of 3 (phase = -90°) versus position (p=x) along

the surface of a cylinder tipped half-plane for various
values of cylinder tip radius, a. p'=.01lm, A=1m, ¢'=0,
$=0, I¢=1. 95=0 (half-plane).
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expanded view of the edge area. First of all, note that for a=0 (no
cylinder) the field is becoming singular as expected. Now, for a small
but finite cylinder radius a, the E? field increases as the edge is
approached, but reaches a maximum aﬁd goes to zero at p=a, as required
by boundary conditions. It can be seen from Figures 4 and 5 that the
field aeaches a higher maximum for smaller a, but is not singular except
for a=0.

Figure 6 shows the total Eg field for y=0, ¢'=0, ¢,=0, p'=.1m,
A=1m and a=5x10-%m vs. p=x on a rectangular scale for tge ideal half-plane
and the cylinder-tipped half-plane, along with a sketch of the relative
size of the cylinder. Figure 7 shows the same curves for a=5x10"°m.

IV.  CONCLUSION

Simple closed form expressions have been derived and presented for
an electric line source with arbitrary current flow near and parallel § 4
to the edge of a perfectly conducting wedge. |

The effect of a physical edge (not perfectly sharp) has been 5
investigated by comparing the fields near the end of a cylinder-tipped :
half-plane with those near the edge of an ideal half-plane.

&

The above results indicate that incorporating the singular edge
behavior into a solution may not be required to obtain agreement with
experiment. However, if one is solving an integral equation based upon
the ideal wedge, incorporating the singular edge behavior may improve
the stability and convergence of the solution [7].

13
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Figure 6.

Magni tude of 34 (phase = -90°) versus position (p=x) along
the surface of 'a cylinder tipped half-plane compared with
that for an ideal half-plane. The relative size of the
cylindrical tip is also shown. p'=.1m, A=Im, ¢'=0, ¢=0,

I¢=l, a=p '/200.
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CYLINDER
TIPPED

Figure 7.

Magnitude of Eg (phase = -90°) versus position (p=x) along
the surface of 'a cylinder tipped half-plane compared with
that for an ideal half-plane. The relative size of the
cylindrical tip is also shown. p'=.1m, A=Im, ¢'=0, ¢=0,

I¢=1, a=p '/2000.
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APPENDIX
SUMMATION OF SERIES

Starting with the known result

Z anx = _].._X.. 5 X>0, 0<ax<} -
n=0 1-a
replace a by aej¢:
;\:° a™ ednox _ B 1-a%eI%¢
n=0 l-axej¢x 1-2axcos(x¢)+a2x

Equating real and imaginary parts gives the desired results:

E a™cos(nxs) = 1-a%cos (x¢) 3
n=0 l-2axcos(x¢)+a2x
E aMRetntneh = +aXsin(x¢) 5
n=0 1-2axcos(x¢)+a2x
Also, from Al,
E A" - aX
n=1 1-ax

Integrating from -= to x gives

= - en(1-a%)

ne~-8
o
3] 3
x

n=1

¢

Replacing a by aed?® and equating real parts gives

nx
n

o

cos(nx¢) = - %-ln[]-Zaxcos(x¢)+a2x]» .

|

n=1
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